Nishanth Marer Prabhu

Google Scholar | nishanth.marerprabhu@gmail.com | +1(857)-390-4372 | LinkedIn | GitHub

EDUCATION

Northeastern University, Boston, MA

Master of Science in Electrical and Computer Engineering (Specialization in Machine Learning)

Coursework: Introduction of Machine Learning, Advances in Deep Learning, Parallel Processing for Data Analytics, Computer Vision, Fundamentals of Computer Engineering, High-Level Design of Hardware/Software Systems

Audit: Reinforcement Learning, Advanced Algorithms, Computer Architecture

BNM Institute of Technology, Bengaluru, India

Bachelor of Engineering: Electronics and Communication Engineering

Coursework: Digital Signal Processing, Microprocessor and Microcontrollers, Wireless Cellular and LTE 4G, Image Processing **TECHNICAL SKILLS**

Programming Languages: C\C++, Python, SystemC, PowerShell, Perl, C++ with Qt, SPARQL, C#, MySQL, Java, Matlab, HTML Frameworks: Data Structures and Algorithms, Design Patterns, PyTorch, Tensorflow, PySpark, Joblib, ONNX, TensorRT Technologies / Tools: NVIDIA Jetson Orin, PySpark, Dockers, Linux, Jenkins, AWS EC2, S3, Git, CUDA, NVIDIA Nsight Compute

EXPERIENCE

Embedded System Laboratory, Northeastern University, Boston, USA Research Assistant / Advisor: Prof. Gunar Schirner

PyTorch to TensorRT model conversion for improved inference speed on NVIDIA Jetson Orin Edge Device

- Achieved up to 20x speedup in CNN, Vision Transformer models using mixed precision, optimizing inference across batch sizes.
- Utilized NVIDIA Nsight Compute and Netron to validate ONNX conversions and analyse computational graphs, identifying CNN-LSTM hybrid model bottlenecks from sequential unrolling that limited parallel processing.
- Conducted layer-wise precision control, manually controlled layer-wise precision (FP32/FP16) for optimal performance and accuracy.
- Employed version-specific **Docker containers** to encapsulate dependencies, ensuring consistent and reliable inference environments.

Terrain Augmented Channel Model (TACM) for Automatic Modulation Recognition (AMR)

- Developed a Convolutional Vision Transformer (CvT) that reduced the number of training parameters compared to the standard Vision Transformer, improving model efficiency and performance on the TACM2024 dataset.
- Designed a novel receiver placement algorithm to balance load proportionally by receiver capacity, simplifying calculations, reducing compute time, and enhancing dataset generation efficiency.
- Utilized Pytorch Lightning to modularize training, control logging, and enable batch randomization, incorporating TensorBoard for visualizing training loss curves and model's performance metrics.
- Employed Linear Sum Assignment, Mixed-Integer Programming (MIP), and Quadratic Least Squares Solvers to improve receiver placement accuracy, enhancing spatial signal recognition.
- Conducted detailed CUDA timing analysis to identify and resolve inefficiencies due to multiple kernels launches and identifying bottlenecks reducing execution time from 4ms to 950µs.

Siemens, Bengaluru, India

Senior Software Engineer | R&D at Smart Grid Infrastructure (C++/Machine Learning)

- Filed a Patent and Invention Disclosure for a Proximity Search-Based Algorithm to optimize numerical solvers' performance.
- Implemented ML techniques like KNN and Graph NN to enhance the convergence rate of compute-intensive applications.
- Designed and developed applications using C++, C#, and MySQL, utilizing Design Pattern methodology for better logic flow.
- Built an OS deployment tool on Jenkins, cutting setup time from 1 hour per machine to 20 minutes, boosting system test efficiency.
- Won STAR Performer Award five times and 2nd place in a Siemens global AI/ML Hackathon organized by Architects.

PUBLICATIONS

- Utilizing terrain-generation to derive realistic channel models for automatic modulation recognition, Proc. SPIE 13035, Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications II, 130351B (7 June 2024)
- Enhancing Automatic Modulation Recognition for IoT Applications Using Transformers, IoT, vol. 5, no. 2, Art. no. 2, Jun. 2024

PROJECTS

Shallow Convolutional Neural Network for Image Classification	
---	--

Designed parallel CNN streams using VGG and ResNet blocks for feature map retention and multi-scale feature extraction.

Achieved 89.5% accuracy on CIFAR10 with 1.3M trainable parameters versus 6.5M in the benchmark. **Parallelization of Genetic Algorithms for Optimal Feature Selection**

- **October December 2023** Leveraged PySpark, Joblib, and Genetic Algorithms for feature selection, boosting task distribution speed by 2x to 25x.
- Achieved speed enhancements for scikit-learn models (MLP, Logistic Regression, XGBoost) while maintaining high accuracy.

Medically Informed Stable Diffusion

- Fine-tuned Stable Diffusion model from Hugging Face using detailed prompts generated using LLMs on custom brain scan datasets.
- Enhanced image generation with a control net, producing anonymized, medically relevant brain scans for research.

Reinforcement Learning Solution for Multi-hour Unit Commitment and Economic Dispatch

- Formulated a Markov Decision Process using Python for multi-horizon security constraints for UI and ED in power systems.
- Increased efficiency by 98% by eliminating intangible states, demonstrating the feasibility of RL for these tasks.

July 2019 - December 2022

November - December 2023

April - July 2020

GPA - 4/4

May 2019

December 2024

January 2024 - Present

February - April 2024